Graduate Student Seminar
February 23, 2024
10:00 a.m. ET
Doherty Hall 2210
February 23, 2024
10:00 a.m. ET
Doherty Hall 2210
Niron Magnetics, Inc. is commercializing Iron Nitride, a high performance, completely rare earth free permanent magnet technology. Iron Nitride will act as an economical substitute for several grades of both sintered and bonded NdFeB magnets. Niron’s Iron Nitride technology is based on progress achieved by the University of Minnesota under work supported by the Department of Energy’s Rare Earth Alternatives in Critical Technologies ARPA-E REACT program. These magnets are based on the α”-Fe16N2 compound which has high saturation magnetization and a moderate magnetocrystalline anisotropy due to a tetragonal crystal structure. Iron Nitride is manufactured from low-cost, non-critical elemental components. The unique characteristics of Iron Nitride include a magnetic strength higher than most grades of NdFeB permanent magnets. Test data also indicates that iron nitride exhibits superior temperature stability when compared to NdFeB. Niron’s magnets are positioned to substitute for NdFeB in applications such as motors with high torque output.
Frank Johnson joined Niron Magnetics, Inc. in March 2018. Prior to Niron, he worked for 13 years at GE Global Research in Niskayuna, NY as a Materials Scientist in the Ceramics and Metallurgy Technologies organization. Dr. Johnson’s work has focused on developing magnetic materials used in power generation, distribution, and conversion technologies. He earned a Ph.D. in Materials Science and Engineering from Carnegie Mellon University, an M.S. in Materials Science and Engineering from M.I.T., and a B.S. in Materials Science and Engineering from Carnegie Mellon University.
November 15 2024
12:45 PM ET
Materials Science and Engineering
"Autonomous Research Laboratories for Materials Exploration and Discovery," presented by Gilad Kusne, National Institute of Standards and Technology
Wean Hall 7500
November 16 2024
9:00 AM - 12:00 PM ET
Carnegie Mellon University
November 18 2024
4:00 PM - 5:00 PM ET
Virtual
November 22 2024
12:45 PM ET
Materials Science and Engineering
"Self-Assembled Water Channels in Fluorine-Free Copolymers for Fast Proton Conductivity," presented by Karen Winey, University of Pennsylvania
Wean Hall 7500
December 3 2024
9:00 AM ET
Materials Science and Engineering
Ph.D. Program Information Session
Learn more about the doctoral degree program in materials science and engineering at Carnegie Mellon.
Zoom - link will be provided upon registration
December 6 2024
12:45 PM ET
Materials Science and Engineering
Dynamic Materials and Systems Inspired by Cephalopods, presented by Alon A. Gorodetsky, University of California - Irvine
Wean Hall 7500